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Section 1 A P'

A Discussion of the F~-Number
1.1 Introduction
The standard measure of the performance of a statistical test for compliance to the TTBT has
become, to most, the so called F-number. The F.pumber is commonly defined by the simple
expression

1.960 -
Fo ) =10 w (1.1)

where L is the standard deviation of the estimated log-yield, where log-yields are assumed to be
normally distributed. The motivation for such a definition is as follows. If W = log Y, where Y =

yield of a given event and W is an estimate of W which is distributed N(W, o W)’ then

P{W< W+Z,\aw]=l-—A (1.2)
and

. Zy o .
P[10W<10W-10" “’]:1—,\ (1.3)

where Zy is the 100(1—A\) percentile of the standard normal distribution. Therefore if A = .025, a

97.5% confidence interval on log yield is (—co, W + 1.960 W)’ or in terms of yield a 97.5% confidence

W 1.966W
interval is given by (0, 107 - 10 ) . Thus if F(aw) is given by (1.1), then

o




P[Y< Y n(aw)]-_-.ws. (1.4)

Since W will ordinarily be some averaged value, it is often referred to as the observed central value and
likewise (although this is not quite correct) the corresponding Y is referred to as a central value. Thus
F is said to be thal multiple of the observed central value below which we are 97.5% certain the true
yield falls.

There Q;e sevéra.l problems with this definition. For example, if oW is not known (and in fact it
is not), a test for compliance cannot be made without involving distributions other than the normal.
In this event the probability in Equation 1.4 is not relevant.

On the other hand, when W ; are avajlable, such as when CORRTEX events are available,
Alevine, Gray, McCartor, and Wilson (1988) have shown that under reasonable assumptions then the

test for compliance leads to a student t-distribution and in that event

P[W< W+ t,(K-1) SW:]= 1 -2 (1.5)

and
. 1,(K=1) S,
P[10W<10W~10" "’]:1—,\ (1.6)

where t,(K—1) is the 100(1 — A) percentile of the t-distribution with K—1 degrees of freedom. A more
detailed discussion of this is given in Section 2 of this report.

One should note that (1.6) does not imply that (1.3) is not longer true. On the contrary, both
(1.3) and (1.6) are correct when the assumptions hold. In general IA(A’—I) > Z’\ and lA(h’—l) — 7
a8 K— o0, and therefore (1.6) does not give as tight a bound as (1.3). However, this is the penalty on=
pays for not knowing ¢ .. In terms of what we know, (taking A = .025) all we can say is that the true

w '
toas(K~1) S

yield is less than or equal to 10% -10 W with .975 probability. Thus it seems that in this

case, the F-number should be defined as




to25(K—1) Sy
RS y) = 10 . (1.7)

This is exactly analogous to the motivation which led to Equation 1.1. There is a problem however,
since F as defined by (1.7) is no longer a . umber but in fact is a random variable. Questions
concerning whether we should consider the expected value of F, the median of F, the mode of F, etc,
immediately arise.

The point is that it should be clear that the simple definition given by Equation 1.1 is
inadequate. Morecover, and possibly more importantly one usually makes use of the F-number in
relation to a test of compliance. In this case the real question may be, “What are our chances of
detecting a violation if in fact Y > Y,?” for some specified Y.

For this sort of question (1.1), (1.2) and (i.3) may not be very helpful even when oW is known.
That is, given the F-number, the answer to the question, “What are our chances of detecting a
violation when one occurs?” is certainly not obvious from (1.2) or (1.3). This is due to the fact that
the question being asked is about the power of a test, whereas (1.2) and (1.3) would relate to the size of
the critical region of this test. Moreover, even when (1.2) and (1.3) are correct it is doubtful that they
do much more than lead to confusion since confidence intervals are commonly misunderstood.

The confusion which has arisen from defining the F-number through the confidence intervals in
(1.2) and (1.3) can be seen from the testimony given by Dr. Robert Barker (the Assistant Secretary of
Defense for Atomic Energy and leader of a U.S. delegation at the bilateral talks on improving
verification of the TTBT) before the Senate Foreign Relations Committee on January 13, 1987. Dr.
Barker was describing the types of interpretations which could be made assuming an F-number
(uncertainty factor) of 2 when he testified:

“ ... this uncertainty factor means, for example, that a Soviet test for which we estimate [by the

seismic method] a yield of 150 kt may have, with 95% probability [actually .95 probability], an actual




yield as high as 300 kt - twice the legal limit - or as low as 75 kt.”

This statement is actually not correct. Once we have an estimated yield of 150kt Equation 1.3
says nothing about the probability. Suppose a horse has a history of winning 95% of its races. The
statement is like saying the horse has a 95% chance of winning a particular race after the race is over.
While it might be argued that we have simply been “picky” with Dr. Barker’s terminology, the main
problem with his F-number explanation is that it does not address the question which is most
pertinent, i.e., “If an event is in violation, what is the chance that our techniques will detect that a
violation has occurred?” In order to correct some of the problems inherent in the confidence interval
definition of an F-number, we offer the following more general definition. It is completely compatible

with the confidence interval definition.

1.2 A More General Definition of the F-number

As we have discussed, the definition given by Equation 1.1 is unsuitable when the standard
deviation of W is unknown. Moreover the confidence interval explanation of an F-number is
unsuitable for responding to the questions such as, “What are our chances of catching them cheating?”

The following definition, first given by Alewine, et. al. (1988), alleviates these problems.

Definition 1: Let W be an estimate of W such that E[W] = W. Suppose G is some function such that

the rule: “Reject Ho if G(W) > T,”, is a A significance level test for the hypothesis

against

Ho: WL T
} (1.8)

Hy:W>T
where T is the treaty threshold and Ty is the appropriate critical value. We then define the F-number

of the test by

Wp—T
Fylo i) =10 , (1.9)




where WF satisfies the equation

PGW)> Ty | W= Wg]=.5 (1.10)
The probability in Equation 1.10 is called the power of the test. From Equations 1.9 and 1.10, it is
seen that the F-number is the ratio of that yield for which there is a 50% chance that the hypothesis of

compliance (1.8) will be rejected, to the TTBT threshold. Now note from (1.10) that
w
Fy(oy) - 107 =10"F, (1.11)

Consequently we can also state that the F-number is the multiplier of the threshold for which there is a
50% chance that the resulting true yield would be rejected as being in compliance. For example, il T
= log 150 kt and F,(o W) = 1.5, then there is a 50% chance that the test would reject compliance if
the true yield were 225 kt. Since G will typicailly be a monotonically increasing function, one can also
say that if F(o w) = 1.5, then there is more than a 50% chance of detecting a violation whenever Y >
225. |

Suppose now, as in Equation 1.1, we assume W ~ N(W, a’W), where T i is known. Then

W= . no,1)
114
and we can test the compliance hypothesis (henceforth we take T = log 150)

Ho: W < log 150
against

HA: W > log 150

at the X significance level by the test: Reject H,, if




W > log 150+ZA oW (1.12)

To determine the F-number for the test we follow Definition 1, i.e.
Wp—log150  WF

Fy\(o W) =10 1
where WF is determined from the equation
P(W > log 150 + Zyo ;| W= Wp]=5. (1.13)

By the symmetry of the normal distribution about its mean, it follows that

and hence (1.14)
Z o .
A
Fy(ogz)=10 "W,

Note however that obtaining Fy(o W) from (1.13) has an immediate advantage. That is, given a
value for F)(o W) in (1.14), and a desired significance level, 7w is determined by Equation 1.14 and
the probability of detecting a violation for any given W, say W = W,, is given by the left side of
Equation (1.13) when Wy is replaced by W;. Thus if A =.025 and FA(UW) = 2, then it follows that
W= .159 . If one desires to know the probability that we would detect a violation under these

conditions when say, W = 400kt, one simply substitutes in the left side of Equation 1.13 to obtain
P{W > log 150 + 1960 . | W =1log 400) = .79
The probability defined by the left side of Equation 1.13 is called the power of the test. In words, it is

the probability that the hypothesis H, will be rejected for a specified value of the true log yield W. A

short table of values of the power of the test defined by Equation 1.12 for various values of W and F




number is given in Table 1.

TABLE 1 - Power for Various F-Numbers and True Yields

A =.02%
F-Number
True Yield 1.3 1.5 1.8 2.0
175 0.209 0.112 0.074 0.064
195 0.500 0.245 0.139 0.112
225 0.857 0.500 0.272 0.208
270 0.992 0.811 0.500 0.383
300 0.999 0.918 0.637 0.500
350 1.000 0.984 0.807 0.669
400 1.000 0.997 0.905 0.792
450 1.000 1.000 0.956 0.874

1.3 The Unknown Variance Case

Suppose now that W is unknown but that SW’ independent of W, is available as in Equation
1.5. We previously remarked concerning the ambiguity that arises from (1.7). We will now show that
Definition 1 removes that ambiguity. In order to do so we first define a test for compliance which is
more fully discussed in the latter sections of this report. In this case (W — W)/SW is distributed as a
Student’s t-distribution with K—1 degrees of freedom, i.e. as { K—1). Thus we have the following test
at the .025 significance level. Reject Ho: W, < log 150 if Wi > log 150 + tgo5(K—1) SW' Following
Definition 1 we can now find the F number for the test. We need to determine W such that

P[W > log 150 + Loas(K—1) S, | W= Wp] =5

or equivalently

p|H 1B 190 (K=1) | W=Wp =5, (1.15)
Sw

However, when W = W # log 150, (W — log 150)/SW is distributed as a noncentral ¢ and a closed
form for Wp cannot be given. However to a very good approximate solution (to several decimal

places), to Equation 1.15 is given by




W, —log 150
F
Loss(K-1) = —o—— (1.16)
HS,)
(Alewine, et. al, 1988). From (1.16) it follows that
Thus, we have approximately
tLos(K—1) E(5.)
Foas(o ) = 10 W, (1.18)

Note that the F-npumber in (1.18) is not a random variable as in Equation 1.7, but is approximately
the expected value of the F-number in Equation 1.7. Since in general E[S W] =co for some c, the F-
number in (1.18) ean be written as

t.025(K—1) co .
o W (1.19)

F.ozs(”w) =10
This should be compared to Equation 1.1. Since in general ¢t g,5( K—1) > 1.96, the F-number as given
by Equation 1.19 is larger than the F-number given by Equation 1.1.
The case where W is not known but can be estimated if the ratio of the CORRTEX to the
seismic variance is known or small was studied by Alwine, et. al. (1988). In that case, SW defined
here, is given by

) =TSH/B’

W
where B, v and Sy are as defined in by Alewine, et. al. (1988).

In summary, several points should now be clear.

1. The definition of the F-number given by Equation 1.1 should only be used when the
assumption of known variance is justified, and this definition of the F-number is
physically meaningful only in this setting.

2. The confidence interval motivation for the F-number defined by Equation 1.1 is useful
when addressing significance level questions, i.e. false alarm rate questions but will usually
lead to confusion regarding power questions, i.e. questions concerning our chances of
detecting noncomplying events.

3. The F-number defined by Definition 1 is equivalent to the F-number defined by




Equation 1.1 when ¢ W is known. Moreover, the recommended presentation of the
F-number makes it more suitable for addressing power questions, i.e. questions concerning
the Soviets’ cheating.

4. The F-number defined by Definition 1 is entirely general regarding the single event
question. That is, the F-number defined by Definition 1 is appropriate whether or not T

is known and whether or not the normality assumption is valid.

1.4 F-number for Biased Estimates

In Definition 1, we assumed that E{W] = W and as a resuit we considered the F-number as a
measure of the precision of the test depending only on T and A. This was reflected in our notation
F’\(aw). However it may be that E[W] = W — b, b > 0, i.e. it may be that ouar estimator
underestimates W on a systematic basis. In this event the power and the significance level of the test
would be reduced. The result of the power being reduced is that the F-number as given by Definition 1
would be too small. However it is an easy matter to correct this problem. This is the purpose of the

following definition which is an extension of Definition 1 that does not require E{W} = W.

Definition 2
Let W be an estimate of W such that E[W] = W — b, b > 0. Suppose G is a function of W and
T, is a given value such that the rule: Reject Hy if G(W) > T),isa A level significance test for the
hypothesis
Ho: w _<_ T
against (1.20)

when b = 0, and is an A; < ) significance level test when b > 0. We then define the F-number of the

test by

Fy(0 4 ) =10 , (1.21)

where W satisfies the equation
PGW)> T, | W= Wg]=.5 . (1.22)

This is of course the same as Definition 1, with the exception that we no longer require b = 0.




Consider once again the known variance case for testing the hypothesis in Equation 1.8. In this
event the test is: Reject Ho if W > log 150 + Zy0 .. Now suppose E{W] = W — b, b > 0. Then the
test of Ho will have a true significance level of A; < A and the F-number will be larger than F, (o W)'
We can apply Definition 2 to determine the effect of the bias, b, on the F-number. By Definition 2 we

want to find an WF such that
P{W > log 150 + Zyou | W=Wg]=5.
Then
AW — (Wp—b) > log 150 — We+b+ Zyoo | W=Wo]=5. (1.23)

However, from (1.23) and the symmetry of W about its mean, W—#$, it follows that

log 150 — WF+6+Z,\"W=0'

Therefore
Wp=log 150 + b+ 2,0
and
b+ Z,0 -
A
Fy(o,,, 0 =10 w
Z\0o .
=10b10 M W
= F(8) Fy(0 ), (1.24)
where
Fb) = 10t . (1.25)

10




Note that now the precision of the test is effected by two factors, F(b) and FA(UW). We refer to F(b)
as the F due to statistical bias and F(o W) as F due to variance. Unless it is clear that W is a biased

estimator, we simply refer to the F due to variance as the F-number.

1.5 The F-number for testing Compliance for a Set of Events

In everything we have considered so far, we have defined the F-number for determining
compliance of a simple event. These ideas are not directly extendable to testing compliance of a set of
events. This is not a shortcoming of our definition but simply the consequence of the fact that for a set
of events there is no unique way for the set to be out of compliance. In order to obtain a unique
F-number for a set of events it would therefore be necessary to define a probability distribution on the
possible values of W, i.e. a Bayesian approach is required. Since there seems to be no basis for

determining such a distribution we will not pursue this question at this time.

Section 2

Testing Compliance of an Event when CORRTEX is not Available,
Based on Data From & Events for which Both Seismic
and CORRTEX are Available

2.1 Introduction

In this section, we consider tests for compliance introduced by Alewine et. al. (1988). In that
report, it was suggested that if past CORRTEX events were available it might be better to base
compliance tests on the assumption that the ratio of the CORRTEX variance to the seismic variance is
known rather than to base the test on the assumption that the individual variances are known. This
conjecture is investigated here and from a robustness point of few it is demonstrated that the
assumption of the ratio is indeed preferable. The need for the more general definition of the F-number
proposed in the previous section will be clear in this section.

The basic setting which will be discussed here is the situation in which there are k events for

which both magnitude and CORRTEX readings are available. Based on these data, tests are then

11




developed for testing the hypothesis that a new event, for which only seismic information is available,
is in compliance. That is, we test the null hypothesis that the yield for the new event is less than or
equal to 150 kt. Throughout this report the following notation will be used:

m; = the magnitude measurement for event i

Y, = the yield for event i

W, =log Y;

A = true geographic bias

A = estimated geographic bias

B = slope

W‘. = estimated log yield for the ith event based on seismic readings of magnitude
W, = estimated log yield for the ith event based on CORRTEX readings

It will be assumed that log yield and magnitude of the ith event are related by
m=A+BW,+e¢,, e; - M0, odgy), (2.1)
where B is known. If CORRTEX data is available on event i, then it is also assumed that
W,=W,+e , &; - M0, oZor) - (2.2)
In the current setting we assume that m; and W, are available for events i = 1, ... , k. We further
assume that ¢; and e; are independent. Then based on these k readings, an unbiased estimator of 4 is

given by

3 .1
A=

Tt

(m: — BW,). (2.3)
2

We now consider a new event, denoted with the subscript k+1, for which only magnitude information

12




is available. Based upon the new magnitude reading, m,,,, an unbiased estimate of log yield is given

by

-

mk+1_A

Wi =—p—-

Denoting the variance of Wk-n by azw, we have

Two cases will be considered:
I. ogg, and ocoR are known

Il. ogg/ocor is known

(2.4)

(2.5)

We will also consider the performance of the tests in Case I and Case Il when only approximations to

oggy and COR are available.

2.2 Compliance Tests

Case I. Suppose that ogg, is known. Then W, defined in (2.4) is normal with variance a";.v given

by (2.5) and the .025 level complicance test is: Reject compliance if:

- 1 62
W,,, > log 150 + 1.96 (1 + E) ;§|+

The test for any given significance level, A, is:

Reject compliance if

“ 1 62
Wy > log 150 + 2, (1+E)__S§.l+_

13
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where Z, is the 100(1-1) percentile of a N(0,1) distribution. From (2.7) the F-number for Case 1 is

given by

sfo+ 0% %]

FA(”W) =10 (2.8)
In Table 2, we display the F-number for Case I for 7cor = .04, and various values of oo,
Cage 1. To consider Case II, let
2 ”%:OR
R* = —_—
IsEl 2
&+ otor
and
r’=1+i-a’ (2.8)
2./ B
= — ";;5'/ — +1. (2.9)
o5/ B° + o¢or
Then, under the hypothesis of compliance, if r = "2C0R/"§EI is known, then R is known and
V,, — log 150
me 8180 -1y, (2.10)
u
B
where
2 k 32
Rty £ (1) aay
=

with ; = m, — BW and t(k—1) a Student’s ¢ random variable with k—1 degrees of freedom. The
resulting test for compliance is given by:

Reject compliance if

14




Wy, > log 150 + t)(k—1) 7 Su/B, (2.12)

where tA(k—l) is the 100(1 — ) percentile of the I-distribution with k—1 degrees of freedom. A short

listing of ¢ values for A=.05 and A=.025 follows:

B tggk-1) ‘025(F—1)

2 6.314 12.706

3 2.920 4.303

4 2.353 3.183

5 2.132 2.776
10 1.833 2.262

A more extensive table for the { distribution can be found in almost any introductory book in

statistics. From Definition 1 of Section 1, the F-number for Case II, is given by

Wp-T
F,\(a W) =10 , (2.13)
where Wp satisfies the equation
: TS
PI:WIC+1 > log 150 + 1, (k—1) —B—'! | W= WF:| =.5 (2.14)

For k = 2 or 3, this equation can be solved for WF numerically. However for k > 3, a very simple

approximate solution to (2.14) is given by

Wp = log 150 + t,(k — 1) 7 E[Sy] / B. (2.15)

Therefore, for T = log 150,

15




Fy(o W) = (2.16)
N
ow " p(i)
E[Sy) = (FE—{) I‘(L'ﬁ‘— To
and
va X(8) _ ae-y)
(l—'i_]) I‘(k—;—l) 4E=2.75
so that to a very good approximation,
k— /2
Fy(o )= m"‘("‘l)“i"(Tz—';)3 (3 + Plolor) /B . (2.17)

Actually, the approximation in (2.17) is good to approximately two decimal places for £ > 2. (see
Alewine, et. al. (1988).

In Table 3 we show the F-numbers found using (2.17) for the parameter configurations considered
in Table 2. There it can be seen that the F-numbers for Case II tend to be slightly larger than those
for Case I.

Note that in Case II the necessity for the more general definition of an F-number is clear. As we
noted in Section 1, had we used the confidence interval definition of the F-number we would have
obtained

t,(k=1) r S/ B

i&Cl)(a i) =10 (2.18)

which is in fact not a number at all but is a random variable!

2.3 Robustness of the Compliance Test

In the compliance test outlined in the previous pages, it was necessary to assume either that both

"?:OR and ”§EI are known or that their ratio is known. In reality such parameters will not be known

16




exactly but instead we will have to use our best estimates or best guess of them. This of course
introduces some imprecision into our probability statements. Consideration of the impact of such
assumption errors are referred to as robustness studies. In this subsection, we will consider the
implications of ogg) # Ggg, Where we now use ~ to distinguish between the true value of the
parameter and the assumed value, ~ denoting the assumed value. We will continue to assume that
0 cor 18 known, although results for ¢ -g unknown could also be obtained.

In this setting the test corresponding to (2.7) for Case I is:

Reject compliance if

=2 2
W,y > log 150 + ZAl:(l +h ”—;—,&' + ”C%{]"? (2.19)
while the test based on the ratio is given by:
Reject compliance if
Wk+1 > log 150 + 1, (k—1) 7 Sy/B. (2.20)

In Tables 4 and 5, we display the actual significance levels of the Case I and Case II tests,
respectively for various combinations of ”gEl and Ggg in the case A = .025 and o or = .04. There
it can be seen that if Ggg, > ogg|, then both tests are A; < A level tests. Conversely, when dgg;, <
oggs both tests are A, > A level tests. Note that the effect on true significance level is not nearly as
dramatic for Case II (assuming only the ratio to be known) than for Case I (assuming both ogg; and
ccor to be known).  An explanation for the fact that the Case Il test is not as sensitive to
misspecification of the variances is that E‘(S?,) = "§E| + Bz”éOR' and thus Sy provides information

from the data concerning the true value of ogg| when o is known. .
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Expressions for the F-numbers for the two tests based on imperfect knowledge of ogg, for Case 1

~2 2
o iiin + ]

Fy(e,) =10 (2.21)

and for Case II by

Fyoy) = oD 7 E(S0)/B

which can be approximated as in (2.17) for k > 2 by

a(k-1)

7 1/2
ty(k—1)gg—575 § (o3e + Bolor) /

Fy(o W) =10 (2.22)
It is interesting to note that the F-number for Case I depends only on the estimated value for og¢, and
does not depend on the true value. For this reason the F-numbers in the present setting can be found
from Table 2 by taking ogg, in the table to be the estimated value. The F-number in (2.22) for Case
I with imperfect knowledge depends on both the estimated value (through 7#) and the true-value
(through o¢, + B*0oR).

In Table 6, we show the F-numbers for the Case II test for the same parameter configurations
considered in Tables 4 and 5. Several observations should be made from the tables:

(1) For both tests we see that there is a trade-off between true significance level, and F-number.
Specifically, whenever dgg) > ogg,, the true significance level, A, is less than or equal to A but at a
cost of a larger F-number. On the other hand, whenever g < ogg, the F-numbers are reduced but
A| > A, i.e. the test no longer has the desired false alarm rate.

(2) If ogg and oo are truly known, then Case I gives a substantially smaller F-number than
Case 11 for a small number of CORRTEX events, k&. However for k as large as 5 or 6 the F-numbers

for the two cases are not substantially different.
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(3) The significance level of Case I is dramatically effected by errors in approximating ogg,. For
example, if ogg| = .08 and Ggg) = .05, then the true significance level is approximately .1 for 2 < &k <
7 and increases to about .11 at k = 20. Since the advertised level is .025, this is a substantial error.
On the otherhand in Case II, if §gg; = .05 when agg = .08, the significance level for 2 < k < 7 is
around .035 and slowly increases to .04 at & = 20.  On the otherhand if 5gg, = .08 and ogg| = .05,
in Case I the significance level is .001 for essentially all k, whereas in Case II, the significance level is
around .02 for reasonable values of k. It is therefore very clear, that if CORRTEX is available, Case I1
offers a gubstantially more robust test.

(4) The F-numbers for Case II tend to be lower than those for Case I when dgg| > ogg). This
corresponds to the fact that in these cases the significance levels for the Case I test tend to be
substantially smaller than the nomial A = .025 level. On the otherhand when G| < oggy, the F-
numbers for the Case | test tend to be smaller than those for Case II. However, in these cases it should
be recalled that the observed significance levels for the Case I tests were often very high. The fact that

the F-number is small is irrelevant if the false alarm rate is unacceptably high.

2.4 A Modified Case II Test
For the Case I and Case Il tests, the conservative approach is to specify ¢, in such a way that
Gggl 2 0gg- Whenever k > 2 CORRTEX events are available, a test can be obtained which always

has true significance level less than or equal to A and which does not require ogg|, 0cor nor their

ratio to be specified. In this case we take 7 to be (1 + %)1/2, and we will denote this by - ; to
emphasize the fact that it is the value of 7 in (2.8) associated with R = 0. The test becomes:
Reject compliance if

. 1 /2

Wi >log 150 + t(k=1) (14 1) Su/B. (2.23)
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It is easy to see that # < 7, for all positive values of g, and ocor and that the test in (2.23)
approximates the test in (2.12) when ogg| » 0cor- The test can be thought of as a Case II test with
dggy = 0o or o0ior = 0. It follows immediately that the test in (2.23) is an A, < X significance level
test. Onme can show that to a very good approximation, the F-pumber corresponding to (2.23) is given

for k> 2 by

4(k—1)

1/2 1/2
t'\(k— 1) m(l'{‘k) / (0§E| + BZUEOR)

/B

(2.24)
Since ¥, > ¥ it follows that the F-number for the Case II test (either with variances known or
unknown) is always less than or equal to the corresponding F-number for the modified Case II test. In
Tables 7 and 8 we show F-numbers and significance levels, respectively, for this modified Case II test.
There it can be seen that the significance levels are always less than or equal to the nominal level of A
= .025 while the F-numbers tend to be larger than those shown for Case I and Case II tests. Thus, the
modified Case Il test provides a conservative alternative in the cases in which a good a priori bound on

oggy is not available. ‘

Section 3
Estimating ogg, from Seismic Data

3.1 Estimation Based on Events for which both Seismic and CORRTEX Data are Available

The tests discussed in Sections 1 and 2 were based on an a priori value for ogg|. However, it
is possible to obtain an estimate of ggg| based on the k (>1) shots for which both seismic and
CORRTEX readings are available if 0-og is assumed to be known. Under this assumption, since

E{.S‘%] = "%El + Bza%OR, where S% is given in (2.11), it follows that ”§E| can be estimated as

o2, = (% - BoZorl . if Si > BoZog

(3.1)

20




=0, if Sy < Bo2ogr -

Of course, the estimator in (2.24) will be poor when k is small. However, this estimate does utilize
information from the k observations concerning the value of ”gEl' The obvious modification of (2.20)

is to substitute gg, for G, in T to obtain:

Reject compliance if

#5e1/ B
ENT
sel/B° + otor

+

Iy

W,y > log 150 + t,(k—1) ( . )‘/2 Su/B. (3.2)
o

Although we have been unable to calculate theoretical significance levels and F-numbers for the
test in (3.2), simulations were run for the case ocor = .04 and B =1 in order to estimate the /-
numbers and true significance levels associated with this test. The empirical estimates of F can be

derived from empirical power. The Case I test can also be modified in this situation to give the test:
Reject compliance if

Wk+1 > log 150 + 2,7 o, (3.3)

where 2. = (1 + }'c)‘%EI + }—cochR. Preliminary results indicate that for larger values of &, the tests

w
in (3.2) and (3.3) have significance levels somewhat above nominal levels over the entire range of
possible o, values. Additionally the F-numbers appear to be competitive with those obtained by
the other tests. These results also show that the modified Case I test in (3.3) has somewhat higher
significance levels than those obtained for the test in (3.2). However, the significance levels for (3.3)

did not reach the excessively high levels observed in Table 4 for the Case I test. The estimate of "gEl

from (3.1) assumes that o-og is known. If this is in fact not the case, then simulations similar to
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those mentioned here can be run to determine the effect of imperfect knowledge of or- In this case
we expect the modified Case II test to be more robust. Another possible modification of the tests
would be based on the use of a weighted estimate of "%El’ which uses both a priori and estimated

information concerning ags,. The simple proposed estimator is given by

~2 .2
52 . 19se1 T 905g
SEl — a, ay

where 4, and a, are constants picked based on physical considerations. = We believe that further
investigation is warranted into the modification of the Case I and Case II compliance tests to make use

of the seismic and CORRTEX data for estimation of og,.

3.2 Estimation Based on a Mixture Model for Seismic Data

Although the estimator in (3.1) provides a method for estimating ogg, from data, to date
there have only been k =1 event for which both seismic and CORRTEX data are available. Only
when more data of this type become available will the use of (3.1) be worthwhile. Gray, Woodward
and McCartor (1989) developed techniques which provide an estimate of g, from seismic data alone
by modeling magnitude (or equivalently log-yield) as a mixture of normal components. A random
variable, X, is said to be distributed as a mixture of normals if its probability density function f is

given by

5 popoo)= "2'::1 ]2%"-2 exp[ —% (::_;{4_&)2] ) (3.4)

!

where Y p, =1, p, > 0. In our application, the assumption of a common component standard
k=1

deviation, i.e. ¢; = o, is a reasonable one. The maximum likelihood estimates are given as the

iterative solution of the following equations:
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i’(kM)z pkn Z}m—l) (3.5)

i = , k=1,2 .., 1, (3.6)

2m) sy '"1) (m-nyz S (=)
&2 "2 :.Zz:l{ (z; — i ) fk""l)(z,.) . (3.7)

where m denotes the mth iterate while }(m) and ]im) represent the mth iterate of the mixture density

given in (3.4) and the kth component density

O R 1= 69

respectively.

It is not unreasonable to expect that more than one explosion would be made at (roughly) each of
several theoretical yield levels associated with the weapons being developed. Also, since the levels of
testing associated with different weapons are likely to differ significantly, one may expect the
components to be sufficiently well separated. Thus, if the mixture random variable X in (3.4) is

magnitude, then o = osE)

In order to determine how well the component standard deviation can be estimated, we
simulated samples from mixtures of normals whose common component variances, o2, are known and
for which the mixing proportions are approximately equal. The component means take on the values

2176 —(k—1)do, k =1, 2, ... , I, where d is a multiplier specifying the separataion among the
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components and o = .06. Note that gmay = 2.176 in all cases considered in this section so that these
are situations in which the null hypothesis of compliance is true. We consider the cases in which the
number of components, I, is 2, 3, and 4 and in which the multiplier d takes on the values 1.5, 2, 2.5
and 5. For each of the 12 resulting combinations we independently generated 200 samples of size n =

80. In Table 9 we show the bias and {MSE associated with the estimation of o5 given by

2005
bias = Y o) — .06
i=1

and

MSE = g(__g______ S 06)°
=1
where c’r(s?zl denotes the estimate of ogg, for the ith sample. There it can be seen that, as would be
expected, the quality of the estimates of o, improve as separation among components increases.
However, for separations of 2.50 or less, there was substantial variability in the estimate of ogg,. The
results of Table 9 indicate that estimates from the mixture-of-normals approach can provide rough

bounds on o).
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Table 2

F-Numbers for Case I

Lambda = 0.025 B=1
Sigma Cor = 0.040
Sigma Sei
k 0.03 0.04 0.05 0.06 0.07 0.08 0.09

S T - - - S - D D D W W M W v S D WD W S e G G MR D D G

10 1.17 1.22 1.28 1.34 1.40 1.47 1.54
11 l1.16 1.22 1.27 1.33 1.40 1.46 1.53
12 1.16 1.22 1.27 1.33 1.40 1.46 1.53
13 l.16 1.21 1.27 1.33 1.39 1.46 1.53
14 1.16 1.21 1.27 1.33 1.39 1.46 1.53
15 1.16 1.21 1.27 1.33 1.39 1.46 1.53
16 1.16 1.21 1.27 1.33 1.39 1.45 1.52
17 1.16 1.21 1.2 1.33 1.39 1.45 1.52
18 1.16 1.21 1.27 1.33 1.39 1.45 1.52
19 1.16 1.21 1.27 1.32 1.39 1.45 1.52
20 1.16 1.21 1.26 1.32 1.39 1.45 1.52
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Table 3

F-Numbers for Case II

Lambda = 0.025 B=1
Sigma Cor= 0.040
Sigma Sei
k 0.03 0.04 0.05 0.06 0.07 0.08 0.09
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Table 4

Actual Significance Levels for Case I
when True Variances are Unknown

Lambda = 0.025 B=1
Sigma Cor = 0.040

True Sigma Sei = 0.030

Estimated Sigma Sei

2 0.025 0.008 0.002 0.000 0.000 0.000 0.000
3 0.025 0.008 0.002 0.000 0.000 0.000 0.000
4 0.025 0.007 0.001 0.000 0.000 0.000 0.000
5 0.025 0.007 0.001 0.000 0.000 0.000 0.000
6 0.025 0.006 0.001 0.000 0.000 0.000 0.000
7 0.025 0.006 0.001 0.000 0.000 0.000 0.000
8 0.025 0.006 0.001 0.000 0.000 0.000 0.000
9 0.025 0.006 0.001 0.000 0.000 0.000 0.000
10 0.025 0.006 0.001 0.000 0.000 0.000 0.000
11 0.025 0.006 0.001 0.000 0.000 0.000 0.000
12 0.025 0.005 0.001 0.000 0.000 0.000 0.000
13 0.025 0.005 0.001 0.000 0.000 0.000 0.000
14 0.025 0.005 0.001 0.000 0.000 0.000 0.000
15 0.025 0.005 0.001 0.000 0.000 0.000 0.000
16 0.025 0.005 0.001 0.000 0.000 0.000 0.000
17 0.025 0.005 0.001 0.000 0.000 0.000 0.000
18 0.025 0.005 0.001 0.000 0.000 0.000 0.000
19 0.025 0.005 0.001 0.000 0.000 0.000 0.000
20 0.025 0.005 0.001 0.000 0.000 0.000 0.000

True Sigma Sei 0.040
Estimated Sigma Sei

k 0.03 0.04 0.05 0.06 0.07 0.08 0.09
2 0.054 0.025 0.010 0.003 0.001 0.000 0.000
3 0.057 0.025 0.009 0.003 0.001 0.000 0.000
4 0.059 0.025 0.009 0.003 0.001 0.000 0.000
5 0.061 0.025 0.009 0.002 0.001 0.000 0.000
6 0.062 0.025 0.008 0.002 0.001 0.000 0.000
7 0.063 0.025 0.008 0.002 0.000 0.000 0.000
8 0.063 0.025 0.008 0.002 0.000 0.000 0.000
9 0.064 0.025 0.008 0.002 0.000 0.000 0.000
10 0.065 0.025 0.008 0.002 0.000 0.000 0.000
11 0.065 0.025 0.008 0.002 0.000 0.000 0.000
12 0.065 0.025 0.008 0.002 0.000 0.000 0.000
13 0.066 0.025 0.008 0.002 0.000 0.000 0.000
14 0.066 0.025 0.008 0.002 0.000 0.000 0.000
15 0.066 0.025 0.008 0.002 0.000 0.000 0.000
16 0.067 0.025 0.008 0.002 0.000 0.000 0.000
17 0.067 0.025 0.008 0.002 0.000 0.000 0.000
18 0.067 0.025 0.008 0.002 0.000 0.000 0.000
19 0.067 0.025 0.008 0.002 0.000 0.000 0.000
20 0.067 0.025 0.008 0.002 0.000 0.000 0.000




Table 4 - Continued

True Sigma Sei 0.050

True

Estimated Sigma Sei

0.025 0

0.025

0.025 0

0.025

0.025 0
0.025 O

0.025

Sigma Sei 0.060

0.080
0.083
0.085
0.087
0.088
0.089
0.089
0.090
0.090
0.091
0.091
0.092
0.092
0.092
0.092
0.092
0.093
0.093
0.093

0.06 0.07

0.004
0.004
0.004
0.004
0.004
0.004
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003

0.001
0.001
0.001

Estimated Sigma Sei

0.047

0.048 0

0.048
0.049
0.049

0.049 0

0.049

0.050 0
0.050 0
0.050 0
0.050 0O
0.050 0
0.050 0

0.050
0.050
0.050
0.050
0.050
0.050

0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005

0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002




Table 4 - Continued

True Sigma Sei 0.070

True

0.176
0.179
0.181
0.183
0.185
0.186
0.187
0.188
0.189
0.190
0.190
0.191
0.191
0.192
0.192
0.193

Sigma

Estimated Sigma Sei

0.110 0.072
0.114 0.074
0.117 0.075
0.119 0.076
0.121 0.076
0.122 0.077
0.123 0.077
0.124 0.078
0.124 0.078
0.125 0.078
0.125 0.078
0.126 0.079
0.126 0.079
0.127 0.079
0.127 0.079
0.127 0.079
0.127 0.079
0.127 0.079
0.128 0.079

Sei 0.080

0.07 o0.08
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013

Estimated Sigma Sei

0.06

0.07 0.08

0.186
0.196
0.202
0.206
0.209
0.212
0.214
0.215
0.217
0.218
0.219
0.220
0.220
0.221
0.222
0.222
0.223
0.223
0.223

0.138 0.097
0.144 0.100
0.147 0.102
0.150 0.103
0.152 0.104
0.153 0.105
0.154 0.106
0.155 0.106
0.156 0.106
0.156 0.107
0.157 0.107
0.157 0.107
0.158 0.107
0.158 0.108
0.158 0.108
0.159 0.108
0.159 0.108
0.159 0.108
0.159 0.108

0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025




Table 4 - Continued

True Sigma Sei 0.090

Estimated Sigma Sei

k 0.03 0.04 0.05 0.06

2 0.212 0.165 0.123 0.088
3 0.222 0.171 0.126 0.089
4 0.228 0.175 0.128 0.091
L] 0.232 0.177 0.130 0.091
6 0.235 0.179 0.131 0.092
7 0.238 0.181 0.132 0.092
8 0.240 0.182 0.132 0.093
9 0.241 0.183 0.133 0.093
10 0.243 0.184 0.133 0.093
11 0.244 0.184 0.134 0.093
12 0.245 0.185 0.134 0.094
13 0.245 0.185 0.134 0.094
14 0.246 0.186 0.135 0.094
15 0.247 0.186 0.135 0.094
16 0.247 0.186 0.135 0.094
17 0.248 0.187 0.135 0.094
18 0.248 0.187 0.135 0.094
19 0.249 0.187 0.136 0.094
20 0.249 0.187 0.136 0.094
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0.07

0.060
0.061
0.061
0.062
0.062
0.062
0.062
0.063
0.063
0.063
0.063
0.063
0.063
0.063
0.063
0.063
0.063
0.063
0.063

0.041




Table 5

Actual Significance Levels for Case 1I
when True Variances are Unknown

Lambda = 0.025 B=1
Sigma Cor = 0.040

True Sigma Sei= 0.030
Estimated Sigma Sei

k 0.03 0.04 0.05 0.06 0.07 0.08 0.09

- P W WD WD V. — A S R D WA T G A G G WD W G D WD WA G e W D G Gy P e e e

3

4

5 0.025 0.018 0.014 0.012 0.011 0.010 0.010
6 0.025 0.017 0.013 0.011 0.010 0.009 0.008
7 0.025 0.016 0.012 0.010 0.009 0.008 0.007
8 0.025 0.016 0.011 0.009 0.008 0.007 0.006
9 0.025 0.015 0.011 0.008 0.007 0.006 0.006
10 0.025 0.015 0.010 0.008 0.007 0.006 0.005
11 0.025 0.014 0.010 0.007 0.006 0.005 0.005

12 0.025 0.014 0.009 0.007 0.006 0.005 0.004
13 0.025 0.014 0.009 0.007 0.005 0.005 0.004
14 0.025 0.014 0.009 0.007 0.005 0.004 0.004

15 0.025 0.013 0.009 0.006 0.005 0.004 0.004
16 0.025 0.013 0.008 0.006 0.005 0.004 0.004
17 0.025 0.013 0.008 0.006 0.005 0.004 0.003
18 0.025 0.013 0.008 0.006 0.005 0.004 0.003
19 0.025 0.013 0.008 0.006 0.004 0.004 0.003
20 0.025 0.013 0.008 0.006 0.004 0.004 0.003

True Sigma Sei= 0.040

Estimated Sigma Sei

3 0.030 0.025 0.022 0.021 0.019 0.019 0.018
4 0.032 0.925 0.021 0.019 0.017 0.016 0.016
5 0.034 0.025 0.020 0.018 0.016 0.015 0.014
6 0.036 0.025 0.020 0.017 0.015 0.013 0.013
7 0.037 0.025 0.019 0.016 0.014 0.013 0.012
8 0.038 0.025 0.019 0.015 0.013 0.012 0.011
9 0.039 0.025 0.018 0.015 0.013 0.011 0.010
10 0.039 0.025 0.018 0.014 0.012 0.011 0.010

11 0.040 0.025 0.018 0.014 0.012 0.010 0.010
12 0.041 0.025 0.018 0.014 0.912 0.010 0.009
13 0.041 0.025 0.017 0.014 0.011 0.010 0.009
14 0.042 0.025 0.017 0.013 2.011 0.010 0.009

15 0.042 0.025 0.017 0.013 0.011 0.009 0.009
16 0.042 0.025 0.017 0.013 0.011 0.009 0.008
17 0.043 0.025 0.017 0.013 0.011 0.009 0.008
18 0.043 0.025 0.017 0.013 0.010 0.009 0.008
19 0.043 0.025 0.017 0.013 0.010 0.009 0.008
20 0.043 0.025 0.017 0.013 0.010 0.009 0.008
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Table 5 - Continued

True Sigma Sei= 0.050

Estimated Sigma Sei

k 0.03 0.04 .05 0.06 0.07 0.08 0.09 -

10 0.051 0.034 0.025 0.020 0.017 0.016 0.014
11 0.052 0.034 0.025 0.020 0.017 0.015 0.014
12 0.053 0.034 0.025 0.020 0.017 0.015 0.014
13 0.054 0.034 0.025 0.020 0.017 0.015 0.014
14 0.055 0.035 0.025 0.020 0.017 0.015 0.014
15 0.055 0.035 0.025 0.020 0.017 0.015 0.013
16 0.056 0.035 0.025 0.020 0.016 0.015 0.013
17 0.056 0.035 0.025 0.020 0.016 0.014 0.013
18 0.057 0.035 0.025 0.019 0.016 0.014 0.013
19 0.057 0.035 0.025 0.019 0.016 0.014 0.013
20 0.058 0.036 0.025 0.019 0.016 0.014 0.013

True Sigma Sei= 0.060

Estimated Sigma Sei

k 0.03 0.04 0.05 0.06 0.07 0.08 0.09
3 0.036 0.030 0.027 0.025 0.024 0.023 0.022
4 0.042 0.033 0.028 0.025 0.023 0.022 0.021
5 0.046 0.035 0.029 0.025 0.023 0.021 0.020
6 0.050 0.036 0.029 0.025 0.022 0.021 0.020
7 0.053 0.038 0.030 0.025 0.022 0.020 0.019
8 0.056 0.039 0.030 0.025 0.022 0.020 0.019
9 0.058 0.040 0.030 0.025 0.022 0.020 0.018
10 0.059 0.040 0.030 0.025 0.022 0.020 0.018
11 0.061 0.041 0.031 0.025 0.022 0.019 0.018
12 0.062 0.041 0.031 0.025 0.022 0.019 0.018
13 0.063 0.042 0.031 0.025 0.021 0.019 0.018
14 0.064 0.042 0.031 0.025 0.021 0.019 0.018
15 0.065 0.043 0.031 0.025 0.021 0.019 0.017
16 0.066 0.043 0.031 0.025 0.021 0.019 0.017 -
17 0.066 0.043 0.031 0.025 0.021 0.019 0.017
18 0.067 0.043 0.031 0.025 0.021 0.019 0.017
19 0.068 0.044 0.032 0.025 0.021 0.019 0.017
20 0.068 0.044 0.032 0.025 0.021 0.019 0.017
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Table 5 -~ Continued

True Sigma Sei= 0.070

Estimated Sigma Sei

20 0.076 0.050 0.037 0.029 0.025 0.022 0.020

True Sigma Sei= 0.080

Estimated Sigma Sei

k 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.068 0.048 0.037 0.031 0.027 0.025 0.023
10 0.070 0.049 0.038 0.031 0.028 0.025 0.023
11 0.072 0.050 0.038 0.032 0.028 0.025 0.023
12 0.074 0.051 0.039 0.032 0.028 0.025 0.023
13 0.075 0.051 0.039 0.032 0.028 0.025 0.023
14 0.076 0.052 0.039 0.032 0.028 0.025 0.023
15 0.077 0.052 0.039 0.032 0.028 0.025 0.023
16 0.078 0.053 0.040 0.032 0.028 0.025 0.023
17 0.079 0.053 0.040 0.032 0.028 0.025 0.023
18 0.080 0.054 0.040 0.033 0.028 0.025 0.023
19 0.081 0.054 0.040 0.033 0.028 0.025 0.023
20 0.081 0.054 0.040 0.033 0.028 0.025 0.023




Table 5 - Continued

True Sigma Sei= 0.090

Estimated Sigma Sei

k 0.03 0.04 0.05 0.06

11 0.076 0.053 0.041 0.034
12 0.077 0.054 0.041 0.034
13 0.079 0.054 0.042 0.034
14 0.080 0 C55 0.042 0.034
15 0.08. 2.056 0.042 0.035
16 0.0R2 0.056 0.042 0.035
17 0.Co3 0.057 0.043 0.035
18 0.084 0.057 0.043 0.035
19 0.085 0.057 0.043 0.035
20 0.085 0.058 0.043 0.035
34
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Table 6

F-Numbers for Case II
when True Variances are Unknown

Lambda = 0.025 B=1
Sigma Cor = 0.040

True Sigma Sei= 0.030

Estimated Sigma Sei

3 1.43 1.48 1.52 1.54 1.56 1.58
4 1.30 1.33 1.36 1.38 1.39 1.40
5 1.25 1.28 1.31 1.32 1.34 1.35
6 1.22 1.26 1.28 1.29 1.31 1.32
7 1.21 1.24 1.26 1.28 1.29 1.30
8 1.20 1.23 1.25 1.27 1.28 1.28
9 1.19 1.22 1.24 1.26 1.27 1.28

10 1.19 1.22 1.24 1.25 1.26 1.27
11 1.18 1.21 1.23 1.25 1.26 1.26
12 1.18 1.21 1.23 1.24 1.25 1.26
13 1.18 1.20 1.22 1.24 1.25 1.26
14 1.17 1.20 1.22 1.24 1.25 1.25
15 1.17 1.20 1.22 1.23 1.24 1.25
16 1.17 1.20 1.22 1.23 1.24 1.25
17 1.17 1.20 1.22 1.23 1.24 1.25
18 1.17 1.19 1.21 1.23 1.24 1.25
19 1.17 1.19 1.21 1.23 1.24 1.25
20 1.16 1.19 1.21 1.23 1.24 1.24

True Sigma Sei= 0.040

Estimated Sigma Sei

10 1.21 1.25 1.27 1.29 1.30 1.31
11 1.21 1.24 1.27 1.28 1.30 1.30
12 1.20 1.24 1.26 1.28 1.29 1.30
13 1.20 1.23 1.26 1.27 1.29 1.30
14 1.20 1.23 1.25 1.27 1.28 1.29
15 1.20 1.23 1.25 1.27 1.28 1.29
16 1.19 1.23 1.25 1.27 1.28 1.29
17 1.19 1.22 1.25 1.26 1.28 1.29
18 1.19 1.22 1.25 1.26 1.27 1.28
19 1.19 1.22 1.24 1.26 1.27 1.28
20 1.19 1.22 1.24 1.26 1.27 1.28
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Table 6 - Continued

True Sigma Sei= 0.050

Estimated Sigma Sei

10 1.24 1.28 1.31 1.33 1.35 1.36 1.37
11 1.24 1.28 1.31 1.33 1.34 1.35 1.36
12 1.23 1.27 1.30 1.32 1.33 1.35 1.35
13 1.23 1.27 1.30 1.32 1.33 1.34 1.35
14 1.23 1.27 1.29 1.31 1.33 1.34 1.34
15 1.22 1.26 1.29 1.31 1.32 1.33 1.34
16 1.22 1.26 1.29 1.31 1.32 1.33 1.34
17 1.22 1.26 1.28 1.30 1.32 1.33 1.34
18 1.22 1.26 1.28 1.30 1.32 1.33 1.33
19 1.22 1.25 1.28 1.30 1.31 1.32 1.33
20 1.21 1.25 1.28 1.30 1.31 1.32 1.33

True Sigma Sei= 0.060

Estimated Sigma Sei

. D S P G e D D R D D . G S W e G e SE S W e e S S T G R N e D . - D W, -

1.29 1.33 1.37 1.39 1.41 1.42 1.43
10 1.28 1.32 1.36 1.38 1.40 1.41 1.42
11 1.27 1.32 1.35 1.37 1.39 1.40 1.41
12 1.27 1.31 1.34 1.37 1.38 1.40 1.41
13 1.26 1.31 1.34 1.36 1.38 1.39 1.40
14 1.26 1.30 1.34 1.36 1.37 1.39 1.40
15 1.26 1.30 1.33 1.35 1.37 1.38 1.39
16 1.25 1.30 1.33 1.35 1.37 1.38 1.39
17 1.25 1.29 1.33 1.35 1.37 1.38 1.39
i8 1.25 1.29 1.32 1.35 1.36 1.37 1.38
19 1.25 1.29 1.32 1.34 1.36 1.37 1.38
20 1.24 1.29 1.32 1.34 1.36 1.37 1.38
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Table 6 - Continued

True Sigma Sei= 0.070

Estimated Sigma Sei

10 1.32 1.37 1.41 1.44 1.45 1.47 1.48
11 1.31 1.36 1.40 1.43 1.45 1.46 1.47
12 1.30 1.35 1.39 1.42 1.44 1.45 1.46
13 1.30 1.35 1.39 1.41 1.43 1.45 1.46
14 1.29 1.34 1.38 1.41 1.43 1.44 1.45
15 1.29 1.34 1.38 1.40 1.42 1.44 1.45
16 1.29 1.34 1.37 1.40 1.42 1.43 1.44
17 1.28 1.33 1.37 1.40 1.42 1.43 1.44
18 1.28 1.33 1.37 1.39 1.41 1.43 1.44
19 1.28 1.33 1.37 1.39 1.41 1.42 1.44
20 1.28 1.33 1.36 1.39 1.41 1.42 1.43

True Sigma Sei= 0.080

Estimated Sigma Sei

10 1.36 1.42 1.46 1.49 1.52 1.53 1.55
11 1.35 1.41 1.45 1.48 1.51 1.52 1.53
12 1.34 1.40 1.44 1.47 1.50 1.51 1.53
13 1.34 1.39 1.44 1.47 1.49 1.51 1.52
14 1.33 1.39 1.43 1.46 1.48 1.50 1.51
15 1.33 1.38 1.43 1.46 1.48 1.50 1.51
lé 1.32 1.38 1.42 1.45 1.47 1.49 1.50
17 1.32 1.38 1.42 1.45 1.47 1.49 1.50
18 1.32 1.37 1.42 1.45 1.47 1.48 1.50
19 1.31 1.37 1.41 1.44 1.47 1.48 1.49

17




Table 6 - Continued

True Sigma Sei= 0.090

Estimated Sigma Sei

- W - -~ — — A LS G - G e A W N e S W D W W - - AL -

2.

1.

1.

1
1.45 1.53 1.58 1 65 1.67 1.68
1.43 1.50 1.55 1.59 1.62 1.64 1.65
1.41 1.48 1.53 1.57 1.60 1.62 1.63
10 1.40 1.47 1.52 1.55 1.58 1.60 1l.62
11 1.39 1.46 1.51 1.54 1.57 1.59 1.60
12 1.38 1.45 1.50 1.53 1.56 1.58 1.59
13 1.37 1.44 1.49 1.53 1.55 1.57 1.58
14 1.37 1.44 1.48 1.52 1.54 1.56 1.58
15 1.36 1.43 1.48 1.51 1.54 1.56 1.57
16 1.36 1.43 1.47 1.51 1.53 1.55 1.57
17 1.36 1.42 1.47 1.50 1.53 1.55 1.56
18 1.35 1.42 1.47 1.50 1.53 1.54 1.56
19 1.35 1.42 1.46 1.50 1.52 1.54 1.55




Table 7

F-Numbers for Modified Case II in (2.23)

LAMBDA .025

B=1

True Sigma Sei

9




Takle 8

Actual Significance Tevels for
Modified Case II Test in (2.23)

True Sigma Sei

2 .019 .020 .022 .022 .023 .023 .024
3 .013 .016 .018 .020 .021 .021 .022
4 .010 .013 .016 .018 .019 .020 .021
5 .008 .011 .014 .016 .018 .019 .020
6 .006 .010 .013 .015 .017 .018 .020
7 . 005 . 009 .012 .014 .016 .018 .019
8 .004 .008 .011 .014 .016 .018 .019
9 . 004 .007 .011 .013 .015 .017 .019
10 .003 .007 .010 .013 .015 .017 .018
11 .003 .006 .010 .013 .015 .017 .018
12 .003 .006 .009 .012 . 015 .016 .018
13 .003 .006 .009 .012 -014 .016 .018
14 .002 .006 .009 .012 .014 .016 .018
15 .002 .005 .009 .012 .014 .016 .018
16 .002 .005 009 .012 014 .016 .017
17 .002 .005 .008 011 .014 .016 .017
18 .002 .005 .008 .011 .014 .016 .017
19 .002 .005 .008 .011 014 .016 .017




Table 9 . Bias and {MSE for Estimating asei‘ using Mixture-of-Normals Approach

Number of Components

2 3 4
bias JMSE bias JMSE bias JMSE
1.5¢ | .006 .018 .016 .029 018 035
20 .006 .023 011 .029 017 .029
250 .001 .022 .008 .024 017 .032
5¢ [—.005 010 —.004 .008 —.003 .007
* True Oei = .06
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